Федеральное медико-биологическое агентство Федеральное государственное бюджетное учреждение «Федеральный научно-клинический центр спортивной медицины и реабилитации Федерального медико-биологического агентства» (ФГБУ ФНКЦСМ ФМБА России)

Индекс УДК 61:796/799	УТВЕРЖДАЮ
Регистрационный номер НИОКТР: AAAA-A20-120021990059-0	Заместитель директора по научной работе ФГБУ ФНКЦСМ ФМБА России
711111-1120-120021990039-0	С.А. Парастаев «» 2022 г.
ОТЧЕ О НАУЧНО-ИССЛЕДОВА	
Проект методических рекомендаций по т методов tDCS и tACS в рамках восстан биологического обеспечения подготови подготовки спо	овительных мероприятий медико-гельного периода годичного цикла
по тем «Разработка технологий применения н высших психических, психомоторных практике восстановительных мероп обеспечения спортсменов спортивны Федерации» (шифр: (промежуточный,	еинвазивных методов модуляции и нейрорегуляторных функций в риятий медико-биологического их сборных команд Российской «Стимул-20»)
Государственное задание ФГБУ ФНК	ЦСМ ФМБА России на 2022 год
Руководитель НИР,	
ведущий научный сотрудник организационно-исследовательского отдела, к.м.н.	И.Н. Митин

СПИСОК ИСПОЛНИТЕЛЕЙ

Научный руководитель темы:		
Ведущий научный сотрудник организационно-исследовательского отдела, к.м.н.	подпись, дата	И.Н. Митин
Ответственный исполнитель по теме: Врач по спортивной медицине отдела медицинского обеспечения спортивных сборных команд и соревнований	подпись, дата	В.В. Завьялов
Исполнители: Главный научный сотрудник организационно-исследовательского отдела	подпись, дата	Б.А. Поляев
Медицинский психолог отдела медико- психологического обеспечения спортивных сборных команд РФ	подпись, дата	С.И. Баршак
Психолог отдела медико- психологического обеспечения спортивных сборных команд РФ	подпись, дата	К.С. Назаров
Психолог отдела медико- психологического обеспечения спортивных сборных команд РФ	подпись, дата	Л.Р. Суфиянова
Старший научный сотрудник организационно-исследовательского отдела (нормоконтролер)	подпись, дата	М. Г. Оганнисян

СОДЕРЖАНИЕ

ВВЕДЕНИЕ4
1. Область применения
2. Нормативные ссылки
3. Обозначения и сокращения
4. Физиологические механизмы воздействия методов транскраниальной
электростимуляции, сочетающих стимуляцию постоянным (tDCS) и
переменным (tACS) током, на организм человека
4.1 Сравнение физиологических эффектов tDCS и tACS, взаимозаменяемость
и возможность совместного применения этих методов
4.2 Применение методов стимуляции током постоянной направленности и
переменной силы (otDCS), сочетающих в себе tDCS и tACS11
5. Показания к применению транскраниальной электростимуляции
6. Противопоказания к применению транскраниальной электростимуляции 14
7. Технология применения метода otDCS, сочетающего в себе tDCS и tACS,
для ускорения восстановления высших психических, психомоторных и
нейрорегуляторных функций спортсменов в условиях подготовительного
периода годичного цикла подготовки
8. Результаты апробации технологии применения метода otDCS, сочетающего
в себе tDCS и tACS, для ускорения восстановления высших психических,
психомоторных и нейрорегуляторных функций спортсменов в условиях
подготовительного периода годичного цикла подготовки
8.1 Организация и методы
8.2 Результаты исследования и их обсуждение
8.3 Выводы
Библиография

ВВЕДЕНИЕ

Одна из основных задач спортивной науки — повышение спортивной результативности. Высокий уровень конкуренции, тяжелые физические и психоэмоциональные нагрузки, которым подвергается спортсмен во время тренировочной и соревновательной деятельности, заставляют вести поиск дополнительных резервов не только в модернизации педагогических аспектов спортивной подготовки, но и в новых методах ускорения восстановления тех функций спортсмена, которые опосредуют его спортивную результативность.

Период восстановления особенно значим для предотвращения рисков травматизации, выгорания и снижения результативности спортсменов высокого уровня. Поэтому особенно актуальны новые подходы к проведению восстановительных мероприятий.

Одним из перспективных методов нейромодуляции, способствующих восстановлению психофизиологического состояния мозга спортсмена, является относительно новый метод, otDCS (oscillatory transcranial direct current stimulation), который является сочетанным применением методик стимуляции постоянным (tDCS) и переменным (tACS) током.

Настоящие Методические рекомендации определяют технологию применения метода транскраниальной стимуляции otDCS, сочетающего стимуляцию постоянным (tDCS) и переменным (tACS) током, для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций организма спортсмена, во многом определяющих спортивную результативность и эффективность процесса спортивной подготовки.

Технология разработана в рамках выполнения составной части прикладной научно-исследовательской работы шифр «Стимул-20»

УТВЕРЖДАЮ

Заместитель руководителя Федерального медико-биологического агентства

		И.В. Боре	есевич
"	»		2022 г

ТЕХНОЛОГИЯ ПРИМЕНЕНИЯ КОМБИНАЦИЙ МЕТОДОВ ТDCS И ТАСЅ ДЛЯ УСКОРЕНИЯ ВОССТАНОВЛЕНИЯ ВЫСШИХ ПСИХИЧЕСКИХ, ПСИХОМОТОРНЫХ И НЕЙРОРЕГУЛЯТОРНЫХ ФУНКЦИЙ СПОРТСМЕНОВ ТАСЅ В РАМКАХ ВОССТАНОВИТЕЛЬНЫХ МЕРОПРИЯТИЙ МЕДИКОБИОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПОДГОТОВИТЕЛЬНОГО ПЕРИОДА ГОДИЧНОГО ЦИКЛА ПОДГОТОВКИ СПОРТСМЕНОВ

Методические рекомендации
МР ФМБА России_____2022
(Проект)

1. Область применения

Настоящий документ предназначены для использования врачами, психологами и другими специалистами, осуществляющими медико-биологическое обеспечение спортивных сборных команд Российской федерации.

В настоящем документе описана технология применения транскраниальной стимуляции переменным током (tACS) в течение периода годичного цикла подготовки высококвалифицированных спортсменов

2. Нормативные ссылки

Настоящий документ разработан на основании рекомендаций и требований следующих нормативных правовых актов и нормативных документов.

Закон Российской Федерации от 4 декабря 2007 года № 329-ФЗ «О физической культуре и спорте в Российской Федерации».

Закон Российской Федерации от 21 ноября 2011 года № 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации».

Закон Российской Федерации от 5 декабря 2017 года №373-ФЗ «О внесении изменений в Федеральный закон "О физической культуре и спорте в Российской Федерации" и Федеральный закон "Об основах охраны здоровья граждан в Российской Федерации"».

Приказ Минздрава России от 30 мая 2018 г. № 288н «Об утверждении Порядка организации медико-биологического обеспечения спортсменов спортивных сборных команд Российской Федерации»

Приказ Министерства здравоохранения РФ от 23 октября 2020 г. № 1144н "Об утверждении порядка организации оказания медицинской помощи лицам, занимающимся физической культурой и спортом (в том числе при подготовке и проведении физкультурных мероприятий и спортивных мероприятий), включая порядок медицинского осмотра лиц, желающих пройти спортивную подготовку, заниматься физической культурой и спортом в организациях и (или) выполнить нормативы испытаний (тестов) Всероссийского физкультурно-спортивного комплекса «Готов к труду и обороне» (ГТО)» и форм медицинских заключений о допуске к участию в физкультурных и спортивных мероприятиях"

Рекомендации «Р» ФМБА России от 25 декабря 2017 г. 15.68-2017 "Разработка, изложение, представление на согласование и утверждение нормативных и методических документов ФМБА России"

3. Обозначения и сокращения

В настоящем документе использованы следующие обозначения и сокращения:

МВП – моторный вызванный потенциал

мкВ – микровольт

СДВГ – синдром дефицита внимания и гиперактивности

ЦНС – центральная нервная система

ПСС – потенциалы, связанные с событиями

ЭЭГ – электроэнцефалограмма, электроэнцефалография

FMT - индивидуальная частота лобного тета ритма

LORETA - мозговая электромагнитная томография низкого разрешения

SRTT - задача последовательного реагирования

tACS – transcranial altering current stimulation, транскраниальная стимуляция переменным током

tDCS – transcranial direct current stimulation, транскраниальная стимуляция постоянным током

otDCS — oscillatory transcranial direct current stimulation, транскраниальная стимуляция током постоянной направленности и переменной силы, совместное применение двух методических приемов tDCS и tACS

so-tDCS – slow oscillatory transcranial direct current stimulation, низкочастотная транскраниальная стимуляция током постоянной направленности и переменной силы

- 4. Физиологические механизмы воздействия методов транскраниальной электростимуляции, сочетающих стимуляцию постоянным (tDCS) и переменным (tACS) током, на организм человека
- 4.1 Сравнение физиологических эффектов tDCS и tACS, взаимозаменяемость и возможность совместного применения этих методов

Использование транскраниальной электрической стимуляции (ТЭС) для повышения эффективности когнитивных функций является достаточно быстро растущей областью исследований. Подобная стимуляция применяется как в сугубо научных, так и в практических, в том числе, и клинических целях [1–5]. Учитывая низкую стоимость и простоту использования, он имеет потенциал для широкого применения как для модулирования когнитивных процессов у здоровых участников, так и для улучшения когнитивных функций при различных заболеваниях. Самими часто используемыми формами электрической стимуляции головного мозга являются стимуляция переменным (tACS) и постоянным (tDCS) током.

Транскраниальная стимуляция постоянным (tDCS) и переменным (tACS) могут модулировать возбудимость коры головного мозга и приводить к изменениям её колебательной активности [6]. Эффект разных видов стимуляции отчасти может быть вызван общими физиологическими механизмами, отчасти — различными. tDCS может поляризовать или деполяризовать мембранные потенциалы нейронов и повышать или понижать возбудимость коры в зависимости от полярности [7; 8]. tACS, помимо влияния на возбудимость коры, также может захватывать колебания мозга с помощью изменения их фазы или мощности на частоте стимуляции [9–12].

Считается, что стимуляция постоянным током модулирует порог возбудимости нейронов. Анодная tDCS, вероятно, приводит к повышению возбудимости нейронов за счет подпороговой деполяризации нейронных мембран [13], в то время как катодная tDCS, вероятно, приводит к снижению

возбудимости за счет их гиперполяризации [14; 15]. Синусоидальный переменный ток, используемый в tACS, не предполагает однозначного изменения мембранных потенциалов. По всей видимости, механизм tACS основывается на изменениях колебательной активности коры головного мозга в ответ на стимуляцию [16]. Потенциальным преимуществом tACS является возможность выбора частоты на основе физиологических данных и в зависимости от поставленной цели. Обычно стимуляция на бета-частоте повышает объём кратковременной памяти [17] и облегчает принятие решений в условиях риска [18]. Стимуляция на гамма-частотах повышает эффективность подвижного интеллекта [19]. Стимуляция на тета-частотах может приводить к повышению объёма рабочей памяти, снижению времени и повышению точности реакции [20–23].

В некоторых конкретных случаях tDCS и tACS могут приводить к сходным эффектам. В других случаях разумнее отдавать предпочтение тому или иному из этих методов или же их сочетанию в зависимости от целей. Группа под руководством К. Джонса представила работу, посвященную **tACS tDCS** возможности использованию вместо ДЛЯ повышения эффективности рабочей памяти [24]. В первом эксперименте в отдельных сеансах участники получали онлайн-tACS на двух заранее выбранных частотах. Исследователи выбрали среднее групповое пиковое значение тетачастоты (7 Гц) для повышения и альфа-частоты (11 Гц) для снижения эффективности рабочей памяти. Стимуляция tACS проводилась над правыми лобно-теменными участками (F4-P4) во время выполнения когнитивных задач, задействующих рабочую память. В этом эксперименте не было каких-либо поведенческих эффектов. В выявлено эксперименте исследователи стимулировали более медленную тета-частоту (4,5 Гц), и проверяли, будет ли лобно-теменной или бифронтальный монтаж электродов более эффективной. В этом эксперименте было выявлено избирательное улучшение рабочей памяти после применения tACS только правых лобнотеменных отделов головного мозга. При этом этот эффект был выражен слабее, чем эффект tDCS, изученный в предыдущем исследовании этих авторов^[25]. Таким образом, авторы не видят преимущества в использовании tACS вместо tDCS для повышения эффективности рабочей памяти, несмотря на то, что одним из физиологических проявлений этого повышения выступает усиление когерентности волновой активности передних и задних отделов головного мозга в тета-диапазоне ^[24].

Как известно, анодная tDCS зоны M1 во время обучения выполнению последовательности двигательных действий приводит к ускорению освоения этой последовательности и улучшению результатов её непосредственного воспроизведения. Это говорит о том, что подобная стимуляция позволяет облегчать либо само обучение, либо процесс ранней консолидации навыка. Группа под руководством В. Краузе задалась вопросом о том, насколько сходные/различные эффекты могут обеспечить tDCS и tACS в задачах на разучивание последовательности движений [26]. В этом исследовании 36 здоровым испытуемым-правшам проводилась альфа- (10Гц), бета- (20 Гц) стимуляция либо имитация стимуляции. 30 здоровым испытуемым-правшам проводилась катодная или анодная tDCS [26].

8 действий, Испытуемые разучивали последовательность ИЗ выполняемых с помощью правой руки. Стимуляция левой зоны М1 проводилась сразу после заучивания в течение 10 минут. Время реакции во время воспроизведения заученной последовательности оказалось значимо выше после tACS на частоте 20 Гц в сравнении со стимуляцией на частоте 10 Гц и имитацией стимуляции, что говорит о влиянии tACS на раннюю консолидацию следов памяти. tDCS также приводила к значимому снижению времени реакции безотносительно полярности. Значимых различий между стимуляцией на частоте 20 Гц и стимуляцией постоянным током выявлено не было. В связи с этим авторы предполагают, что эффект стимуляции на частоте 20 Гц, подобно эффекту стимуляции постоянным током, связан с изменениями возбудимости моторной коры [26].

Цель исследователей во главе с Ф. Рёнер состояла в том, чтобы провести

прямое сравнение между эффектами tACS и анодной tDCS у здоровых участников, максимально точно сопоставив параметры методов, учитывая их фундаментальные различия, в перекрестном дизайне [27]. В качестве модели для исследования была избрана функция рабочей памяти. В данном использовались **tACS** лобно-теменных **tDCS** исследовании 30H дорсолатеральной префронтальной коры. Рабочая память оценивалась с помощью зрительной задачи. Всем испытуемым tACS, tDCS и имитация стимуляции проводились в рандомизированим порядке. Задача на рабочую память проводилась либо до, либо во время, либо после стимуляции. Ни время реакции, ни точность реакций в зависимости от типа стимуляции в данном исследовании значимо не различались. Но при этом наблюдался прирост эффективности рабочей памяти независимо от типа стимуляции, при этом пик эффективности наблюдался во втором сеансе. При этом участники, получавшие фиктивную стимуляцию на первом сеансе, достигали плато ко сеансу. В дальнейшем авторы провели внутрисубъектный перекрёстный анализ эффектов разных типов стимуляции 10 участников, каждый из которых получал оба типа стимуляции в уравновешенном порядке. tACS приводила к более выраженному повышению эффективности рабочей памяти, нежели tDCS. Авторы приходят к выводу, что необходимо и далее прорабатывать протоколы повышения эффективности рабочей памяти с помощью tACS.

4.2 Применение методов стимуляции током постоянной направленности и переменной силы (otDCS), сочетающих в себе tDCS и tACS

Существует способ стимуляции, сочетающий два вышеописанных метода (tDCS и tACS), а именно стимуляция током постоянной направленности и переменной силы, otDCS (oscillatory transcranial direct current stimulation). Метод otDCS, представляющий собой фактически сумму tDCS и tACS, одновременно модулирует и потенциалы, и колебательную

активность нейронных мембран [6; 11]. Представляется, что данный метод может быть использован для повышения когерентности колебательной активности спинного и головного мозгов. Низкочастотная otDCS (so-tDCS) обычно подразумевает собою стимуляцию на частоте ниже 1 Гц [28]. Сигнал синусоидальной so-tDCS представляет собою синусоиду, сдвинутую относительно нулевой точки [28; 29]. Основная идея ритмической составляющей otDCS, точно так же, как и в случае tACS, состоит в том, чтобы стимулировать мозг на присущих ему частотах, таких, например, как альфа-, бета-, гамма- или тета-частота [11; 30]. Показано, в частности, что подобная стимуляция усиливает эндогенные низкочастотные колебания во время сна и тета-колебания во время бодрствования [31; 32]. Подобные типы стимуляции используются значительно реже, чем tACS. Часто они попадают в категорию tDCS, что не совсем верно.

Для усиления корково-спинномозговой колебательной связи otDCS обычно настраивают соответственно внутренним частотам колебательной нейронной активности в мозге-мишени [11; 33]. В нескольких исследованиях сообщалось, что tACS с индивидуальными частотами может усиливать мощность эндогенных мозговых колебаний [34]. Кроме того, электрическое напряжение на мембране демонстрирует сильные периодические флуктуации в тех случаях, когда частота стимуляции близка к собственной частоте [34; 35].

Группа под руководством Т. Бергманна провела исследование, посвящённое влиянию низкочастотной otDCS на кортикоспинальную возбудимость [36]. 10 здоровым испытуемым проводилась либо анодная стимуляция otDCS первичных моторных зон руки на частоте 0,8 Гц, либо простая tDCS. Возбудимость оценивалась с помощью одиночных импульсов транскраниальной магнитной стимуляции. Стимуляция проводилась сессиями по 30 секунд, измерения возбудимости проводились во время стимуляции. Также через 10, 20 или 30 секунд после начала записывались моторные вызванные потенциалы. Кроме того, они также записывалась перед стимуляцией, а также между сеансами и после сеансов. Было показано, что и

tDCS, и so-tDCS на частоте 8 Гц повышают амплитуды моторных вызванных потенциалов непосредственно во время стимуляции, при этом эффект был выражен сильнее к концу 30-секундного сеанса. Процедура so-tDCS не фазовых изменений кортикоспинальной приводила к возникновению возбудимости за счёт навязывания внешнего ритма. Было показано, что и простая tDCS, и so-tDCS вызывают достаточно длительные изменения возбудимости. Индивидуальные изменения амплитуды моторных вызванных потенциалов во время первой процедуры tDCS выступали в роли предикторов изменений моторных вызванных размера длительных потенциалов, возникавших после tDCS. Авторы исследования делают вывод о том, что otDCS на частоте 8 Гц, близкой к наблюдаемой на ЭЭГ во время сна, время бодрствования, не проводимая BO приводит к изменениям возбудимости, аналогичной той, что наблюдается при проведении этой во время сна. Тем не менее, наблюдаются процедуры изменения возбудимости, не зависящие от частоты/фазы стимуляции [36].

Группа исследователей во главе с С. Гроппа сравнивала эффекты стимуляции первичной моторной зоны руки с помощью постоянного тока (tDCS) и низкочастотного тока постоянной направленности и переменной силы (so-tDCS). В их исследовании было показано, что so-tDCS при пиковой силе тока 1,5 А (при этом среднее значение силы тока соответствует 0,75 Ана частоте 0,8 Гц может, как и tDCS с силой тока 0,75 А, вызывать длительные изменения кортикоспинальной возбудимости в состоянии бодрствования, эффект этот различается в зависимости от полярности. При пиковом значении силы тока 0,75 А (соответствующее среднее значение – 0,375 А) выраженных эффектов не наблюдалось [28].

5. Показания к применению транскраниальной электростимуляции

Показанием к использованию предлагаемого метода tACS являются сниженные адаптационные возможности организма спортсменов, работоспособность и психоэмоциональная устойчивость спортсменов.

6. Противопоказания к применению транскраниальной электростимуляции

Противопоказанием для проведения предлагаемого метода транскраниальной стимуляции являются судорожные состояния, эпилепсия, острые травмы и опухоли головного мозга, гидроцефалия, гипертонический криз, острые психические расстройства, тиреотоксикоз, повреждения кожи в местах наложения электродов, наличие вживленных стимуляторов, детский возраст (до 5 лет).

Относительным противопоказанием являются заболевания в стадии декомпенсации, острые воспалительные процессы, сопровождающиеся гипертермией, различные острые интоксикации.

Пол и профессиональный уровень спортсмена не являются ограничивающими факторами.

7. Технология применения метода otDCS, сочетающего в себе tDCS и tACS, для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки

На основе данных исследований [11; 14; 37–55] разработаны два протокола, которые могут быть применены для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки. Расположение электродов в терминах международной системы 10-20 схематически представлены на рис. 1.

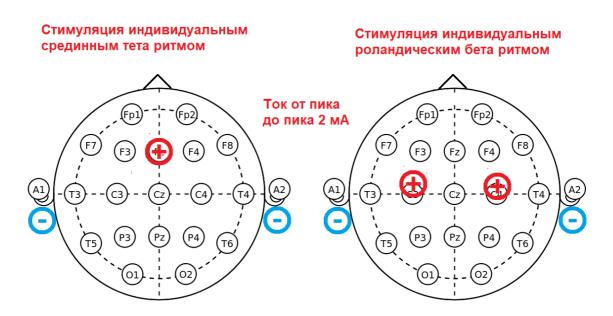


Рис. 1. - Расположение электродов для двух протоколов, которые могут быть применены для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки

Слева на рисунке 1 показан протокол для улучшения когнитивных функций человека. Последовательность действий в рамках данного протокола выглядит следующим образом. Прежде всего, во время выполнения испытуемым сложного математического теста регистрируется 19-канальная ЭЭГ. Далее, вычисляются спектры ЭЭГ в разных отведениях и определяется

максимум пика в отведении Fz. Положение пика на оси частот определяет индивидуальную частоту лобного срединного тета ритма. В свою очередь, эта частота определяет частоту tACS. Амплитуда воздействия устанавливается в размере 2 мА и ниже порога чувствительности.

Справа на рис. 1 справа схематически показан протокол для улучшения моторных функций человека. Для этого в двигательном тесте (нажатие на кнопку ответа на GO стимулы в GO/NOGO тесте с вероятностью GO стимулов 80%) регистрируется 19-канальная ЭЭГ, вычисляется ее спектр и определяется максимум пика в отведении, контралатеральном стороне двигательного акта (СЗ или С4) в бета диапазоне (13-30 Гц). Положение пика на оси частот определяет индивидуальную частоту роландического бета. В свою очередь, эта частота определяет частоту tACS. Амплитуда воздействия устанавливается в размере 2 мА и ниже порога чувствительности.

На рис. 2 схематически показан параметры протокола использования otDCS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки.

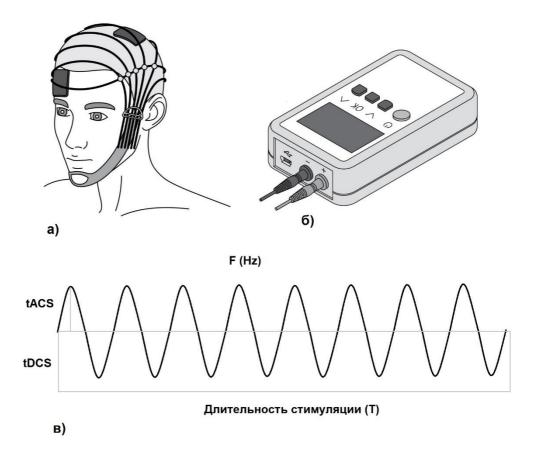


Рис. 2. - Методика использования otDCS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки. А) шлем для фиксации стимулирующих электродов. Б) транскраниальный электростимулятор Нейростим (ООО «Нейрософт» © 2021 Россия, 153032, г. Иваново, ул. Воронина, д. 5 Телефоны: (4932) 95-99-99, (4932) 24-04-34 Факс (4932) 24-04-35 E-mail: info@neurosoft.com Internet: www.neurosoft.com). В) параметры otDCS: амплитуды «подставки» - tDCS, амплитуда переменного тока (tACS), частота переменного тока (F), длительность стимуляции (T).

Исходя из анализа данных литературы параметры использования otDCS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки могут быть следующими (Таблица 1).

Таблица 1. - Параметры использования otDCS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки

Номер	Положени	Частота	Подставк	Амплитуд	Длительност	Число
протокол	e	стимуляции	a	a	ь одной	сесси
a	электродов		tDCS B	tACS в мА	сессии	й
			мА			
1	1 см слева	Подбирается	2 мА	2 мА	От 20 мин в	4-5
	от Fz	индивидуальн			начале до 40	
		о (5.5-8 Гц)			мин в конце	
					исследования	
2	C3-C4	Подбирается	2 мА	2 мА	От 20 мин в	4-5
		индивидуальн			начале до 40	
		о (13-30 Гц)			мин в конце	
					исследования	

8. Результаты апробации технологии применения метода otDCS, сочетающего в себе tDCS и tACS, для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов в условиях подготовительного периода годичного цикла подготовки

8.1 Организация и методы

Апробация технологии ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов посредством применения комбинаций методов tDCS и tACS проводилось на базе учебнотренировочного центра ФГБУ «Новогорск» в период с 04 июля 2022 года по 30 сентября 2022 года.

В апробации приняли участие 15 спортсменов национальных сборных команд различных видов спорта (гандбол, легкая атлетика, спортивное каратэ, греко-римская борьба). Из них — 9 мужчин, 6 женщин, средний возраст — 30 лет). В период исследования спортсмены находились в подготовительном периоде тренировочного процесса, имели ежедневные интенсивные тренировочные нагрузки, 2 тренировки в день.

Для оценки высших психических, психомоторных и нейрорегуляторных функций спортсменов использовались следующие методы:

- Электроэнцефалограмма регистрировалась с помощью электроэнцефалографа экспертного класса «Мицар-ЭЭГ-202» (ООО «Мицар», г.Санкт-Петербург);
- Оценка реакции на движущийся объект (РДО), реализованной в АПК «БиоМышь Исследовательская» (КПФ-01b) (ООО «НейроЛаб» , г. Москва);
- Тест оценки распределения внимания проводился также с применением АПК «БиоМышь Исследовательская» (КПФ-01b) (ООО «НейроЛаб», г. Москва).

Сеансы транскраниальной электростимуляции осуществлялись посредством электростимулятора транскраниального "Нейростим" (ООО «Нейрософт», г. Иваново).

Статистическая обработка данных проводилась с помощью программы IBM SPSS Statistics, использовался непараметрический критерий Уилкоксона.

Протокол исследования влияния транскраниальной электростимуляции с применением комбинации методов tDCS и tACS приведен в Таблице 2.

Таблица 2. - Протокол апробации технологии применения пяти сеансов транскраниальной электростимуляции комбинаций методов tDCS и tACS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов

1 день			2-4 дни	5 день		
Диагностика	Стимуляция	Диагностика	Стимуляци я	Стимуляци я	Диагностика	
1) ЭЭГ - 3Г+ОГ	otDCS	1) ЭЭГ - 3Г+ОГ	otDCS	otDCS	1) ЭЭГ - 3Г+ОГ	
2) ЭЭГ - математический тест		2) ЭЭГ - математическ ий тест			2) ЭЭГ - математический тест	
3)Тест РДО					3)Тест РДО	
4)Тест «распределение внимания»					4)Тест «распределение внимания»	

В таблице 3 приводится таймограмма первого дня исследования.

Таблица 3. - Таймограмма первого дня протокола апробации технологии применения пяти сеансов транскраниальной электростимуляции комбинаций методов tDCS и tACS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов

Процедура	Общее время
1) ЭЭΓ - 3Γ+ΟΓ	45 ACCUSTO
2) ЭЭГ - математический тест	45 минут
3) Тест РДО	3 минуты
4) Тест распределения внимания	3 минуты
3) otDCS	40 минут
4) ЭЭΓ - 3Γ+ΟΓ	45
5) ЭЭГ - математический тест	45 минут
Итого	136 мин

Регистрация ЭЭГ

Для регистрации биоэлектрической активности использовался электроэнцефалограф «Мицар-ЭЭГ-202» («МИЦАР-ЭЭГ-ВП-31/8», г. Санкт-Петербург).

Регистрация проводится с помощью хлорсеребряных электродов, установленных на поверхности головы с помощью электродного геля согласно международной системе 10-20 по 19 стандартным отведениям (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) с частотой дискретизации 250 Гц в диапазоне частот 0,3 - 70 Гц при следующих условиях:

- а) Глаза закрыты (ЕО) не менее 5 минут;
- б) Глаза открыты (ЕС) не менее 5 минут;
- в) Регистрация ЭЭГ и реакций испытуемого во время выполнения математического теста.

После этого для полученных записей производилась коррекция артефактов методом независимых компонент и удаление участков, содержащих нескорректированные артефакты.

Для участков ЭЭГ «ЕО» (открытые глаза) и «математический тест» вычислялись спектры, сопоставление которых в ряде записей позволило выявить индивидуальную частоту тета-ритма (в диапазоне от 5 до 10 Гц). В дальнейшем процедура otDCS проводилась именно на этой частоте. В противном случае (если не удавалось выделить индивидуальную частоту тета-ритма), для дальнейшей стимуляции использовалась частота 6 Гц.

Сразу после электростимуляции повторно проводились следующие этапы:

- а) Глаза закрыты (ЕО) не менее 5 минут;
- б) Глаза открыты (ЕС) не менее 5 минут;
- в) Регистрация ЭЭГ и реакций испытуемого во время выполнения математического теста.

Стимуляция otDCS

В исследовании использовался транскраниальный электростимулятор «Нейростим» (ООО «Нейрософт» г. Иваново, Россия). Настройки стимулятора представлены на рисунке 3.

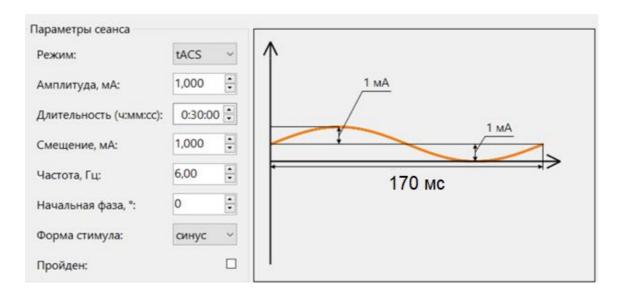


Рисунок 3. - Параметры otDCS. Окно настроек программы «Neurostim».

Амплитуда стимуляции (tACS компонент) составляла 1 мА, ток смещения (tDCS компонент) составил 1 мА. Достичь рекомендованных амплитуды и тока смещения в 2 мА не позволяли устройства, имевшиеся в распоряжении исследователей. Для испытуемых, у которых удавалось выделить индивидуальную частоту тета-ритма, стимуляция, как уже отмечалось, проводилась на этой частоте, для испытуемых, у кого не удалось выделить такую частоту, использовалась средняя по популяции частота 6 Гц, как показано на рисунке.

Расположение электродов представлено на рисунке 4.

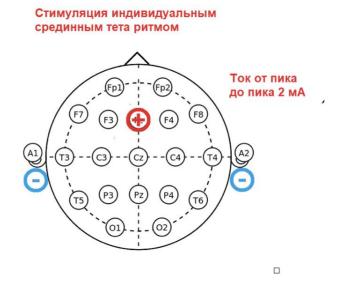


Рисунок 4. - Схема расположения стимулирующих электродов относительно классической схемы 10-20.

Площадь анодного электрода и суммарная площадь катодных электродов составляли 30 кв.см.

8.2 Результаты исследования и их обсуждение

Из всех спортсменов, участвовавших в исследовании, только у 5-ти отмечался лобный тета-ритм в фоне. Этот результат примерно соответствует среднему процентному составу людей с тета ритмом (20-40%) в европейских

[56]. Ни у спортсменов, у которых отмечался исходный тета ритм, ни у тех спортсменов, у которых он не отмечался, после стимуляции не было выявлено улучшение поведенческих показателей в рамках математического теста (Таблица 4).

Таблица 4. - Поведенческие данные в математическом тесте до (ФОН) и после otDCS сеанса (данные, усредненные по группе)

	Пропуски	Ложные нажатия	Время реакции	Ошибка времени реакции
otDCS, Match	2.89%	-	363	11.5
otDCS, Mismatch	-	1.44%	-	-
ФОН, Match	2.11%	-	381	12.9
ФОН, Mismatch	-	2.67	-	-

На рис. 5 представлен пример одного из испытуемых с лобным тетаритмом в состоянии спокойного бодрствования до процедуры otDCS (ФОН). Видно наличие лобного тета ритма в виде пика на спектре мощности ЭЭГ в отведении Fz в состоянии спокойного бодрствования с открытыми глазами с пиковой частотой около 8 Гц (красная кривая). Видно также, что при выполнении математического теста (зеленая кривая) происходит значимое (р<0.05) увеличение лобного тета ритма в соответствующем частном диапазоне и в соответствующей локализации. Индивидуальная частота тета ритма была выбрана в качестве частоты стимуляции otDCS.

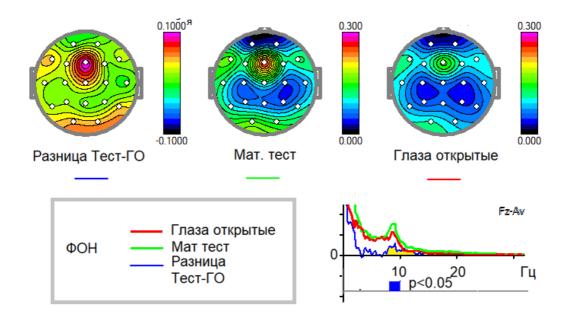


Рис. 5. - Определение частоты тета ритма одного из испытуемых до процедуры ЭС стимуляции (ФОН). Внизу – спектры мощности ЭЭГ в отведении Fz в состоянии спокойного бодрствования с открытыми глазами (зеленя кривая), при выполнении математического теста (красная кривая), а также разностная кривая (Тест-ГО) с показателями статистической значимости отличия (р<0.05). Сверху – топографии соответствующих кривых на частоте индивидуального тета ритма

На рис. 6 представлен пример мощности лобного тета ритма у того же испытуемого после процедуры otDCS на частоте индивидуального тета-ритма. Спектры вычислены для фрагмента с выполнением математического теста. Видно, что сеансы otDCS, не вызывают статистически значимых изменений в мощности лобного тета-ритма.

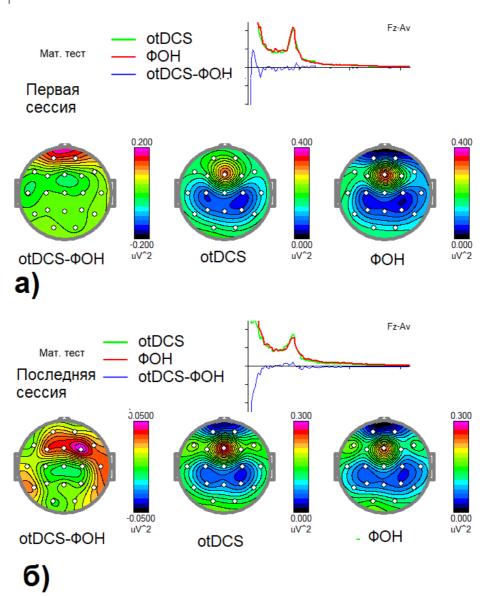


Рис. 6. - Динамика мощности лобного тета ритма в математическом тесте у одного из испытуемых, вызванная одиночным сеансом otDCS (а), и последовательной серией сеансов otDCS (б). На а и б вверху – спектры мощности ЭЭГ в отведении Fz в при выполнении математического теста до (красная кривая) и сразу после сеанса otDCS (зеленая кривая), а также разностная кривая (otDCS -ФОН) с показателями статистической значимости отличия (p<0.05). Внизу – топографии соответствующих кривых на частоте индивидуального тета ритма

Тем не менее, усреднённые данные, полученные в рамках анализа потенциалов, связанных с событиями (ПСС), говорят о том, что стимуляция приводит к изменению реактивности лобной коры (рис. 7).

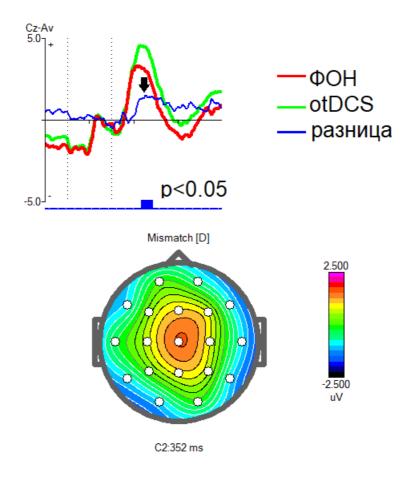


Рис. 7. - ПСС в ответ на Mismatch условие (после предъявления испытуемому на экране математического примера следует неверный ответ) до и после сеанса otDCS. Представлены: ПСС, регистрируемые в отведении Fz, в фоне, до стимуляции (красная линия) и после сеанса стимуляции (зеленая линия), а также разница между ними с отметками статистического различия на уровне p<0.05.

Изменения средней скорости реакции (в рамках анализа данных, в рамках теста распределения внимания) после курса otDCS выявлено не было: 1958 мс до курса otDCS против 1989 мс после курса. Но, одновременно с этим ряд параметров указывает на увеличение стабильности реакции. Так, снизились значения стандартного отклонения (927 до, 841 — после otDCS), коэффициент вариации (46% до, 41% после). Также снизилось количество ошибок (13,25 шт. до и 7,5 после). В тесте реакции на движущийся объект испытуемые продемонстрировали снижение абсолютных значений ошибки

(величины отклонения стрелки в ту или иную сторону от целевой точки). До курса данное значение составляло 15,7 мс, после курса — 9,1 мс. Также увеличилась стабильность реагирования — до курса среднеквадратическое отклонение в среднем составляло 57,4, после — 51,3.

8.3 Выводы

Основным механизмом действия tDCS является модулирование возбудимости нейронов деполяризации/гиперполяризации за счёт мембранных потенциалов, основной механизм tACS – вовлечение ритмов головного мозга в заданные с помощью переменного тока внешние колебания. Различные формы стимуляции otDCS, представляющие собою сочетания tDCS и tACS действуют за счёт обоих этих механизмов, при этом в некоторых случаях в зависимости от характера задачи и условий заметно большее влияние может оказывать один из этих механизмов, иными словами, в разных случаях стимуляция otDCS по своим эффектам может быть больше похожа либо на tDCS, либо на tACS. В части случаев (где на первый план выходит механизм деполяризации/гиперполяризации) разумнее использовать tDCS, в части (где наиболее важно влияние на колебательную активность) – tACS, в части (где принципиально необходимо и технически возможно в достаточной степени влиять и на колебательную активность, и на возбудимость нейронов) - otDCS.

Предложен протокол применения otDCS для ускорения восстановления высших психических, психомоторных и нейрорегуляторных функций спортсменов высокого класса, а также описана методика оценки высших психических, психомоторных и нейрорегуляторных функций спортсменов высокого класса в условиях проведения восстановительных мероприятий с применением otDCS, основанная на регистрации 19-ти канальной ЭЭГ в состоянии покоя и при выполнения когнитивного теста.

Результаты апробационных исследований применения комбинаций методов tDCS и tACS для ускорения восстановления высших психических,

психомоторных и нейрорегуляторных функций с участием спортсменов национальных сборных команд показали:

- отсутствие статистически значимых изменений мощности лобного тета-ритма при выполнении математического теста;
- изменение реактивности лобной коры по усреднённым данным, полученным в рамках анализа потенциалов, связанных с событиями (ПСС);
- увеличение стабильности реакции по показателям методики оценки распределения внимания;
- снижение абсолютных значений ошибки по данным методики оценки реакции на движущийся объект.

Эффективность применения технологии метода otDCS требует:

- 1) индивидуализации протоколов модуляции ритмов, исходно существующих у спортсмена;
 - 2) длительность воздействия током не менее 40 минут;
 - 3) последовательность сессий в течении 4-5 дней.

Библиография

- 1. Coffman B.A., Clark V.P., Parasuraman R. Battery powered thought: Enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation//NeuroImage, 2014, Vol. 85, Battery powered thought, P. 895-908.
- 2. Prehn-Kristensen A., Munz M., Göder R., Wilhelm I., Korr K., Vahl W., Wiesner C.D., Baving L. Transcranial Oscillatory Direct Current Stimulation During Sleep Improves Declarative Memory Consolidation in Children With Attention-deficit/hyperactivity Disorder to a Level Comparable to Healthy Controls//Brain Stimulation, 2014, Vol. 7, No. 6, P. 793-799.
- 3. Tortella G. Transcranial direct current stimulation in psychiatric disorders//World Journal of Psychiatry, 2015, Vol. 5, No. 1, P. 88.
- 4. Breitling C., Zaehle T., Dannhauer M., Bonath B., Tegelbeckers J., Flechtner H.-H., Krauel K. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)//Frontiers in Cellular Neuroscience, 2016, T. 10.
- 5. Dagan M., Herman T., Harrison R., Zhou J., Giladi N., Ruffini G., Manor B., Hausdorff J.M. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease//Movement Disorders, 2018, T. 33, N 4, C. 642-646.
- 6. Herrmann C.S., Rach S., Neuling T., Strüber D. Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes//Frontiers in Human Neuroscience, 2013, T. 7, Transcranial alternating current stimulation.
- 7. Nitsche M.A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation//The Journal of Physiology, 2000, Vol. 527, No. 3, P. 633-639.
- 8. Das S., Holland P., Frens M.A., Donchin O. Impact of Transcranial Direct Current Stimulation (tDCS) on Neuronal Functions//Frontiers in

Neuroscience, 2016, T. 10.

- 9. Reato D., Rahman A., Bikson M., Parra L.C. Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies//Frontiers in Human Neuroscience, 2013, T. 7.
- 10. Helfrich R.F., Schneider T.R., Rach S., Trautmann-Lengsfeld S.A., Engel A.K., Herrmann C.S. Entrainment of Brain Oscillations by Transcranial Alternating Current Stimulation//Current Biology, 2014, Vol. 24, No. 3, P. 333-339.
- 11. Veniero D., Vossen A., Gross J., Thut G. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity//Frontiers in Cellular Neuroscience, 2015, T. 9, Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation.
- 12. Tavakoli A.V., Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols//Frontiers in Cellular Neuroscience, 2017, T. 11, C. 214.
- 13. Creutzfeldt O.D., Fromm G.H., Kapp H. Influence of transcortical dc currents on cortical neuronal activity//Experimental neurology, 1962, T. 5, N 6, C. 436-452.
- 14. Nitsche M.A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human//Journal of cognitive neuroscience, 2003, T. 15, N 4, C. 619-626.
- 15. Stagg C., Jayaram G., Pastor D., Kincses Z., Matthews P., Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning//Neuropsychologia, 2011, T. 49, N 5, C. 800-804.
- 16. Antal A., Herrmann C.S. Transcranial alternating current and random noise stimulation: possible mechanisms//Neural plasticity, 2016, T. 2016.
- 17. Feurra M., Galli G., Pavone E.F., Rossi A., Rossi S. Frequency-specific insight into short-term memory capacity//Journal of Neurophysiology, 2016,

- T. 116, N 1, C. 153-158.
- 18. Yaple Z., Martinez-Saito M., Awasthi B., Feurra M., Shestakova A., Klucharev V. Transcranial alternating current stimulation modulates risky decision making in a frequency-controlled experiment//eneuro, 2017, T. 4, N 6.
- 19. Santarnecchi E., Polizzotto N.R., Godone M., Giovannelli F., Feurra M., Matzen L., Rossi A., Rossi S. Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials//Current Biology, 2013, T. 23, N 15, C. 1449-1453.
- 20. Polanía R., Nitsche M.A., Korman C., Batsikadze G., Paulus W. The Importance of Timing in Segregated Theta Phase-Coupling for Cognitive Performance//Current Biology, 2012, Vol. 22, No. 14, P. 1314-1318.
- 21. Jaušovec N., Jaušovec K. Increasing working memory capacity with theta transcranial alternating current stimulation (tACS)//Biological Psychology, 2014, Vol. 96, P. 42-47.
- 22. Jaušovec N., Jaušovec K., Pahor A. The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions//Acta Psychologica, 2014, Vol. 146, P. 1-6.
- 23. Violante I.R., Li L.M., Carmichael D.W., Lorenz R., Leech R., Hampshire A., Rothwell J.C., Sharp D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance//eLife, 2017, Vol. 6, P. e22001.
- 24. Jones K.T., Arciniega H., Berryhill M.E. Replacing tDCS with theta tACS provides selective, but not general WM benefits//Brain research, 2019, T. 1720, C. 146324.
- 25. Jones K.T., Peterson D.J., Blacker K.J., Berryhill M.E. Frontoparietal neurostimulation modulates working memory training benefits and oscillatory synchronization//Brain Research, 2017, Vol. 1667, P. 28-40.
- 26. Krause V., Wach C., Südmeyer M., Ferrea S., Schnitzler A., Pollok B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson's disease//Frontiers

- in Human Neuroscience, 2014, T. 7.
- 27. Röhner F., Breitling C., Rufener K.S., Heinze H.-J., Hinrichs H., Krauel K., Sweeney-Reed C.M. Modulation of Working Memory Using Transcranial Electrical Stimulation: A Direct Comparison Between TACS and TDCS//Frontiers in Neuroscience, 2018, T. 12, Modulation of Working Memory Using Transcranial Electrical Stimulation, C. 761.
- 28. Groppa S., Bergmann T.O., Siems C., Mölle M., Marshall L., Siebner H.R. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans//Neuroscience, 2010, Vol. 166, No. 4, P. 1219-1225.
- 29. Eggert T., Dorn H., Sauter C., Nitsche M.A., Bajbouj M., Danker-Hopfe H. No Effects of Slow Oscillatory Transcranial Direct Current Stimulation (tDCS) on Sleep-Dependent Memory Consolidation in Healthy Elderly Subjects//Brain Stimulation, 2013, Vol. 6, No. 6, P. 938-945.
- 30. Antal A., Boros K., Poreisz C., Chaieb L., Terney D., Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans//Brain Stimulation, 2008, Vol. 1, No. 2, P. 97-105.
- 31. Marshall L., Helgadóttir H., Mölle M., Born J. Boosting slow oscillations during sleep potentiates memory//Nature, 2006, Vol. 444, No. 7119, P. 610-613.
- 32. Kirov R., Weiss C., Siebner H.R., Born J., Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding//Proceedings of the National Academy of Sciences, 2009, Vol. 106, No. 36, P. 15460-15465.
- 33. Vulić K., Bjekić J., Paunović D., Jovanović M., Milanović S., Filipović S.R. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory//Scientific Reports, 2021, Vol. 11, No. 1, P. 3013.
 - 34. Zaehle T., Rach S., Herrmann C.S. Transcranial Alternating Current

- Stimulation Enhances Individual Alpha Activity in Human EEG//PLoS ONE, 2010, Vol. 5, No. 11, P. e13766.
- 35. Fröhlich F., McCormick D.A. Endogenous Electric Fields May Guide Neocortical Network Activity//Neuron, 2010, Vol. 67, No. 1, P. 129-143.
- 36. Bergmann T.O., Groppa S., Seeger M., Mölle M., Marshall L., Siebner H.R. Acute Changes in Motor Cortical Excitability During Slow Oscillatory and Constant Anodal Transcranial Direct Current Stimulation//Journal of Neurophysiology, 2009, Vol. 102, No. 4, P. 2303-2311.
- 37. Bjekić J., Živanović M., Paunović D., Vulić K., Konstantinović U., Filipović S.R. Personalized Frequency Modulated Transcranial Electrical Stimulation for Associative Memory Enhancement//Brain Sciences, 2022, T. 12, N 4, C. 472.
- 38. Qiao J., Li X., Wang Y., Wang Y., Li G., Lu P., Wang S. The Infraslow Frequency Oscillatory Transcranial Direct Current Stimulation Over the Left Dorsolateral Prefrontal Cortex Enhances Sustained Attention//Frontiers in Aging Neuroscience, 2022, T. 14.
- 39. Mizrak E., Kim K., Roberts B., Ragland D.J., Carter C., Ranganath C. Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval//Cognitive Neuroscience, 2018, T. 9, N 3-4, C. 194-207.
- 40. Naro A., Russo M., Leo A., Cannavò A., Manuli A., Bramanti A., Bramanti P., Calabrò R.S. Cortical connectivity modulation induced by cerebellar oscillatory transcranial direct current stimulation in patients with chronic disorders of consciousness: a marker of covert cognition?//Clinical Neurophysiology, 2016, T. 127, N 3, C. 1845-1854.
- 41. Antal A., Nitsche M.A., Kincses T.Z., Kruse W., Hoffmann K., Paulus W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans//European Journal of Neuroscience, 2004, T. 19, N 10, C. 2888-2892.
- 42. Cogiamanian F., Marceglia S., Ardolino G., Barbieri S., Priori A. Improved isometric force endurance after transcranial direct current stimulation over

- the human motor cortical areas//European Journal of Neuroscience, 2007, T. 26, N 1, C. 242-249.
- 43. Arns M., Kleinnijenhuis M., Fallahpour K., Breteler R. Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles//Journal of Neurotherapy, 2008, T. 11, N 4, C. 11-18.
- 44. Kao S.-C., Huang C.-J., Hung T.-M. Neurofeedback training reduces frontal midline theta and improves putting performance in expert golfers//Journal of Applied Sport Psychology, 2014, T. 26, N 3, C. 271-286.
- 45. Landers D.M., Petruzzello S.J., Salazar W., Crews D.J., Kubitz K.A., Gannon T.L., Han M. The influence of electrocortical biofeedback on performance in pre-elite archers.//Medicine & Science in Sports & Exercise, 1991.
- 46. Okano A.H., Fontes E.B., Montenegro R.A., Farinatti P. de T.V., Cyrino E.S., Li L.M., Bikson M., Noakes T.D. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise//British journal of sports medicine, 2015, T. 49, N 18, C. 1213-1218.
- 47. Pollok B., Boysen A.-C., Krause V. The effect of transcranial alternating current stimulation (tACS) at alpha and beta frequency on motor learning//Behavioural Brain Research, 2015, Vol. 293, P. 234-240.
- 48. Reis J., Schambra H.M., Cohen L.G., Buch E.R., Fritsch B., Zarahn E., Celnik P.A., Krakauer J.W. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation//Proceedings of the National Academy of Sciences, 2009, T. 106, N 5, C. 1590-1595.
- 49. Ring C., Cooke A., Kavussanu M., McIntyre D., Masters R. Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport//Psychology of sport and exercise, 2015, T. 16, C. 118-127.
- 50. Rostami R., Sadeghi H., Karami K.A., Abadi M.N., Salamati P. The effects of neurofeedback on the improvement of rifle shooters' performance//Journal of Neurotherapy, 2012, T. 16, N 4, C. 264-269.
 - 51. Vitor-Costa M., Okuno N.M., Bortolotti H., Bertollo M., Boggio P.S.,

- Fregni F., Altimari L.R. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling//PloS one, 2015, T. 10, N 12, C. e0144916.
- 52. Williams P.S., Hoffman R.L., Clark B.C. Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction//PloS one, 2013, T. 8, N 12, C. e81418.
- 53. Zhu F.F., Yeung A.Y., Poolton J.M., Lee T.M., Leung G.K., Masters R.S. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task//Brain stimulation, 2015, T. 8, N 4, C. 784-786.
- 54. Sousa Fortes L. de, Faro H., Lima-Junior D. de, Albuquerque M.R., Ferreira M.E.C. Non-invasive brain stimulation over the orbital prefrontal cortex maintains endurance performance in mentally fatigued swimmers//Physiology & Behavior, 2022, T. 250, C. 113783.
- 55. Fortes L.S., Ferreira M.E., Faro H., Penna E.M., Almeida S.S. Brain Stimulation Over the Motion-Sensitive Midtemporal Area Reduces Deleterious Effects of Mental Fatigue on Perceptual—Cognitive Skills in Basketball Players//Journal of Sport and Exercise Psychology, 2022, T. 1, N aop, C. 1-14.
- 56. Kropotov J. Functional neuromarkers for psychiatry: Applications for diagnosis and treatment. Academic Press, 2016.

Список исполнителей

Федеральное медико-биологическое агентство Федеральное государственное бюджетное учреждение «Федеральный научно-клинический центр спортивной медицины и реабилитации Федерального медико-биологического агентства» (ФГБУ ФНКЦСМ ФМБА РОССИИ)

БЕЗОПАСНОСТЬ И ПЕРЕНОСИМОСТЬ ПРИМЕНЕНИЯ МЕТОДА рТМС В РАМКАХ ВОССТАНОВИТЕЛЬНЫХ МЕРОПРИЯТИЙ ПСИХОФИЗИОЛОГИЧЕСКОГО ОБЕСПЕЧЕНИЯ СПОРТСМЕНОВ ВЫСОКОГО КЛАССА

Методические реко	мендации
МР ФМБА России	- 2022
Директор Начальник организационно- исследовательского отдела	А.В. Жолинский В.С. Фещенко
Руководитель работы, ведущий научный сотрудник	И.Н. Митин
Исполнители:	
Ответственный исполнитель по теме, Врач по спортивной медицине Медицинский психолог Психолог	В.В. Завьялов С.И. Баршак
Главный научный сотрудник	К.С. Назаров Б.А. Поляев
Медицинский психолог	Л.Р. Суфиянова

Врач по спортивной медицине		М.В. Купеев
Врач по спортивной медицине		М.С. Тарасова
Старший научный сотрудник		М.Г. Оганнисян
Федеральное государственное бюдже	тное учрежде	ение науки
«Институт мозга человека им. Н.П. Бо	ехтеревой Ро	ссийской академии
наук» (ИМЧ РАН):		
Директор		М.Д. Диду
Заведующий лабораторией		Ю.Д. Кропото
Заведующий лабораторией		М.Г. Старченко
Научный сотрудник		Ю.А. Бойцова
Научный сотрудник		O.B. Kapa
Клинический психолог, нейробиолог		Я.А. Макарова
Общество с ограниченной ответствен	ностью «Веб	Спорт» (ООО
«ВебСпорт»):		
Заместитель директора		В.Н. Касаткин
Ведущий научный сотрудник		А.В. Ковалева
Психолог		Н.Ю. Федунина
Профессор кафедры		А.Н. Лобов
Профессор кафедры		В.П. Плотников